Improving local and regional earthquake locations using an advance inversion Technique: Particle swarm optimization∗

نویسندگان

  • Kusum Deep
  • Anupam Yadav
  • Sushil Kumar
چکیده

The estimation of the hypocentral parameters in seismology has remained as one of the beststudied and challenging problem. In this paper a simple procedure has been presented to obtain the improved locations of local and regional earthquakes with advance inversion technique with minimum seismograph recording geometry. The problem is formulated as a nonlinear optimization problem in which the decision variables are the hypocentral parameters and the objective function to be minimized is the sum of squares of the differences between the observed and calculated times at specified locations. The objective of this paper is demonstrating the use of the latest heuristic technique for optimization namely “Particle Swarm Optimization” for solving the stated inversion problem. The earthquakes have triggered and recorded in NW Himalayan region are taken for experiments. The results obtained are discussed in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Earthquake Locations in NW Himalayan Region: An Application of Particle Swarm Optimization

Inversion problems in seismology deal with the estimation of the location of an earthquake from the observations of the arrival times of the body waves. This problem is modeled as a non-linear optimization problem in which the objective function to be minimized is the discrepancy between the observed and the calculated travel times. This paper attempts to determine the seismic location in the u...

متن کامل

Non-linear stochastic inversion of regional Bouguer anomalies by means of Particle Swarm Optimization: Application to the Zagros Mountains

Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a stochastic population-based optimizer, originally inspired by the social behavior of fish schools and bird flocks. PSO is ...

متن کامل

Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm

Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The ...

متن کامل

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010